RESEARCH FOR DEVELOPMENT

CSIR – CROPS RESEARCH INSTITUTE

National Tomato Breeding Programme: Past, Present and the Future PRESENTATION AT WACCI, UNIV. OF G HANA BY K.O.BONSU & M.K.OSEI

Outline of Presentation

<u>Tomato</u>

Background of Tomato Breeding in Ghana 1960-mid 1980s

□ Current Breeding Programmes Mid 1990s to present

The Future of Tomato Breeding in Ghana

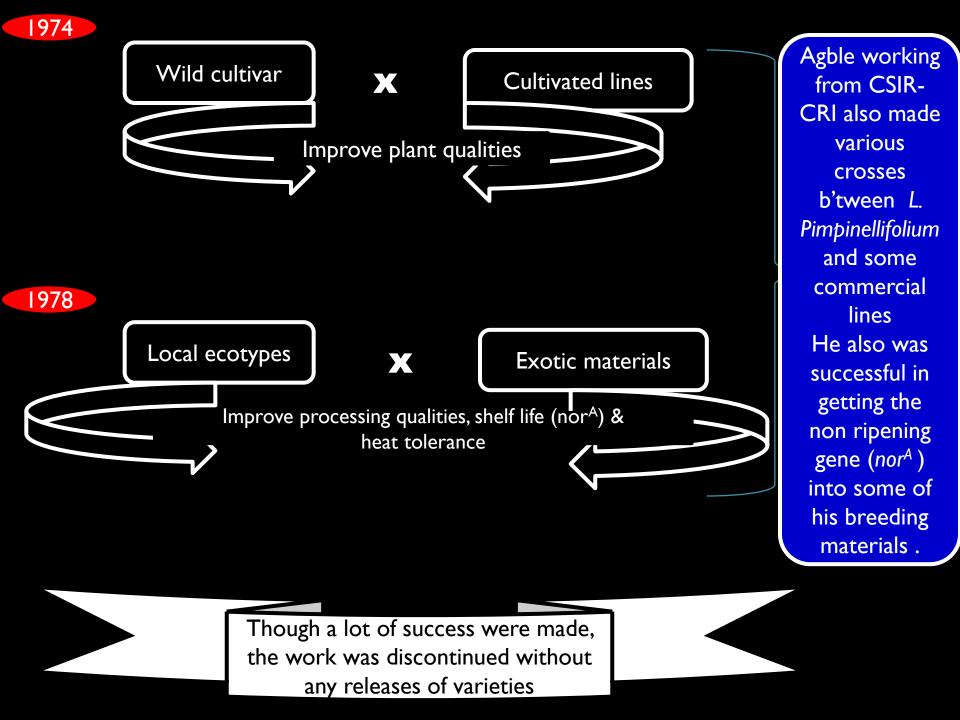
Tomato was introduced into the West African sub region by the Portuguese between the 16th and 17th Century

The crop has since its introduction become an important food item in the sub region.

In Ghana, it is now the number one vegetable consumed and most of our food preparations have grown around it.

 Production has always lagged behind leading to a huge short fall which always has to be imported

 Research work has concentrated on agronomy, physiology and protection with very little being on breeding


 Development of the crop in terms of breeding new varieties has not been systematic

- The Govt. in the 1960s promoting industrialization in Ghana built dams and irrigation projects key areas to promote tomato
- By 1968 processing industries were set up to process tomato at Pwalugu and Wenchi and Nsawam.

- Tomato breeding actively started in the country majo r research institutions (CSIR-CRI and UG) to support the industry.
- The breeding work led to the development of the following varieties.

 The OK and MH series through crosses between local and exotic lines like (Kumasi x Oxheart) and (Manpong x Hawaii) produced new cultivars like the (McEwen 1961; Doku 1963).

 The Wosowoso a vigorous material tolerant to nematode infestation and high rainfall (Sinnaduari an d Doku, 1976).

 By the mid 1980's the tomato factories stopped prod ucing due poor management

- This led to a slow down in active research in breeding. Few in the academic institutions.
- However farmers went ahead and did their own selec tions on their fields and came out with lines like...

1 Power

Power Rano

Farmer selected lines

Pectofake

Tyre

Current Breeding Programmes

Mid 1990s to present

Tomato Research work at CSIR-CRI

- Collections and Characterization
- Field evaluations & Genetic diversity
- Generation of crosses/cross combination
- Development of high yielding tomato fruits using pureline selection
- Some bit of molecular work on tomato

Germplasm collection and Characterization

In 1995 under NARP and AgSSIP, tomato germplasm were collected all over the country

□ In 2012 under KAFACI, tomato germplasm were assembled from Korea, Burkina

Faso, Taiwan and Ghana

□ A semi structured questionnaire from CSIR-PGRRI are usually administered

to obtain some passport data for the collected germplasm

Germplasm collection

Activity a. Collection of tomato germplasm from RDA & AVRDC via postal mail

Activity b. Collection of tomato germplasm in Burkina Faso & selected growing areas in the Agro ecological zones of Ghana

Collections from Guinea, Sudan savannah and part of semi deciduous zones

Germplasm collections

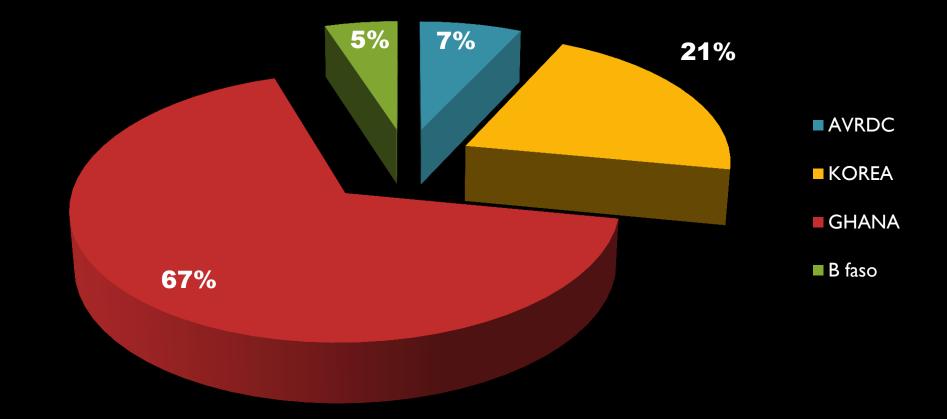


Fig. I Germplasm assembled from different countries

Collections from Ghana

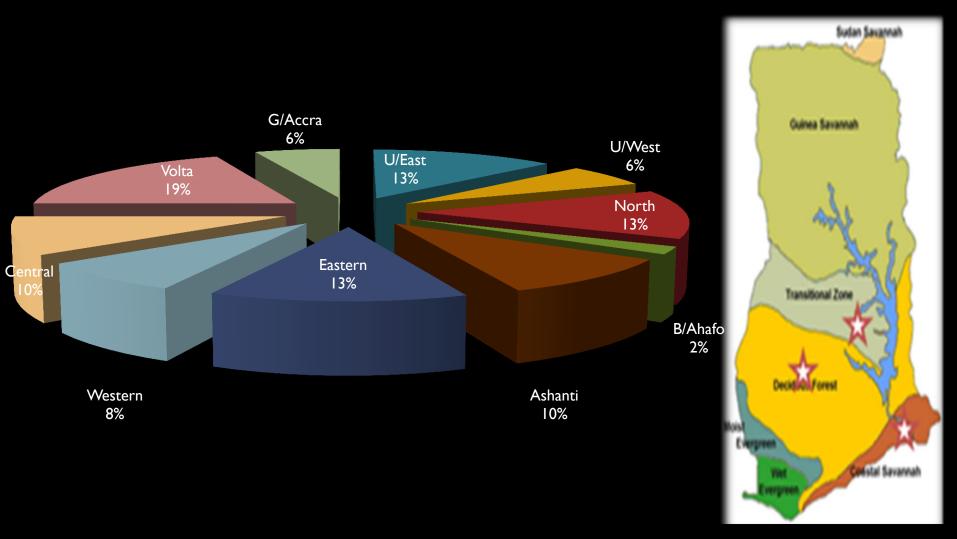
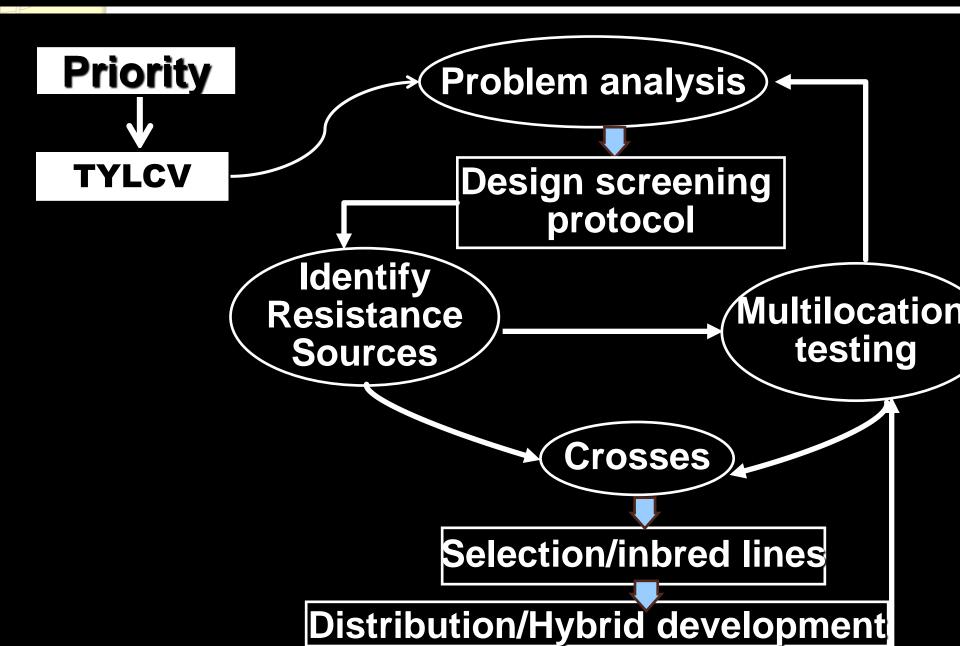


Fig. 2a Germplasm assembled from Ghana

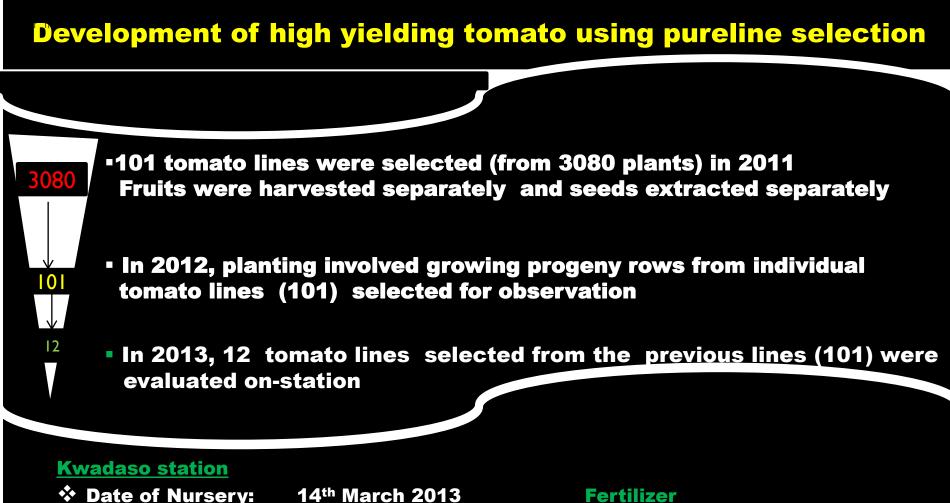
Fig. 2b Agro ecological zones in Ghana


Breeding programme at CSIR-CRI

Our breeding programme is geared towards the following:

✓ Breeding for disease resistance (TYLCV)

- Breeding for good horticultural characteristics such fruit shape, size, colour etc
- Development of high yielding tomato varieties using pureline selection method
- ✓ Breeding for processing qualities, high brix, shelf life
- ✓ Breeding mini tomato for export market
- Breeding for heat tolerance tomato (climate change)


Breeding for disease resistance

Breeding for good horticultural characteristics:

Cross Combinations

Mala							
<u>Male</u>	x <u>Female</u>	Accession r	no. <u>Name</u>	Source	<u>Desirable trait</u>		
202	191	<u>202</u>	AVTO 0102	AVRDC	Fruit shape		
042	083	042	local tomato	V/R	Fruit shape		
087	186	087	5K	SARI	Fruit shape, colour		
106	188	106	local tomato	Bolga (U/E)	High yielding		
070	005	070	local tomato	Bunlung (N/R)	Fruit shape, fruit size		
		083	6(A)	SARI	Plant height/yield		
083	042	097	local tomato	Binduri (U/E)	Fruit shape		
097	213	042	local tomato	V/R	TYLCV resistant		
042	209	213	AVTO 0102	AVRDC	Virus tolerant		
070	191/083	191	Dyune	Korea	TYLCV resistant, brix		
		188	Madiso	Korea	Shelf life, TYLCV resi.		
083	042	005	Petomech	E/R	High yielding		
042	083	209	AVTO 01020	AVRDC	Brix, fruit size		
106	188	079	local tomato	Bontanga (N/R)	Fruit size, shape		
213	079						
				20			
F ₁ ge	neration –	2014	Advance F_1 to $F_2 \longrightarrow F_2 - F_3 - F_4$				

- * Date of Transplanting: 9th April 2013
- \Rightarrow Size of land : 0.1 ha (39m x 22m)
- 100cm x 50cm Plant spacing :
- Design : **RCBD** with three blocks

Fertilizer

- 1. YaraMila winner (150kg/ha)
- 2. YaraLiva nitrabor (125kg/ha)
- 3. Krista K (50kg/ha)

PURE LINE SELECTION

Step 1

- 101 plants were selected from a large population of 3080 plants
- Selection was based on Fruit shape, Fruit surface, Fruit colour, Fruit size
- Their fruits were harvested separately and seeds extracted accordingly

Segregating fruits

- drastic reduction was made
- diseases plants & defects were eliminated
- 12 tomato lines were selected

Pl	JR		N	Π	SE			CT			
		0000)0000)00000	000000	00000	00000	000000	0000	0	
			0000			~~~~		<u> </u>	0000		

Step 2

•Planting involved growing progeny rows from the individual plants (101) selected for observation

- Lines with defects or susceptible to diseases etc were eliminated
- A drastic reduction were made in the number of lines during this process

Breeding mini tomato to feed Ghanaian local market

Objective

To develop tomatoes that can stand high rainfall conditions
To feed the expanding expatriate community in Ghana

Mini tomato growing in the middle of the rainy season with no fungal problems. No fungicide have been applied yet.

Fruits of mini tomatoes

Plum Shape

Heart Shape

Round Shape

Farmers from Western region who visited CSIR-CRI during our open day and saw it fruiting during the middle of the rainy season are already requesting for seed.

Crosses between mini tomato and cultivated tomato

Mini -tomato X commercial large types F4 – Increased shelf life (in some cases up to 50+ days) Increased fruit size over the mini-types Good brix (between 4-6) Improved fruit no /truss Improved fruit shapes

Molecular work on tomato at CSIR-CRI

- Molecular characterization of tomato germplasm
 Molecular screening for TYLCV resistance
 - Two to three young tender leaves are plugged into plastic envelopes, labeled and stored on ice
 - > These are taken to the molecular laboratory
 - The extraction process was carried out using Egnin et al., (2000) protocol with modifications by the laboratory

The Future of Tomato Breeding in Ghana

The golden age for tomato breeding

- Demand of tomato and tomato products increasing.
- The population becoming more and more critical in choice of products
- Production technologies changing ... introduction of protected cultivation ...

Looks at developing of tomato to meet the following demands

Breeding for heat tolerance tomato

- Breeding for tomato varieties adaptable in greenhouse
- Breeding for processing qualities, high brix, shelf life
- Poor storage condition for breeder seeds of vegetables
- Breeding for disease resistance (bacterial wilt & nematode)

some challenges need addresing

- Funding for research in vegetable is limited
- Capacity building (long term training) in vegetable breeding) is limited

THANK YOU