INTRODUCING WATER-EFFICIENT TECHNOLOGIES INTO BANGLADESH

ALTERNATE WETTING AND DRYING FOR PADDY RICE

PROJECT SNAPSHOT

In northwestern Bangladesh, continuous irrigation of paddy rice has led to ‘groundwater mining’ and rapid depletion of aquifers.

This is particularly the case during the winter season from December to May. Most rice farmers practice traditional irrigation, drawing groundwater through either shallow or deep tube wells. On average, farmers irrigate each paddy plot about 15 times per season. Each irrigation cycle requires 300,000-500,000 liters of water per acre. However, the main financial cost of rice cultivation is labor; land leases and fertilizer are also expensive.

TABLE OF CONTENT

1. Project snapshot
2. CSRA Lens
3. Climate Change Challenge
4. Climate Smartness
5. Profitability
6. Mitigation
7. Resilience
8. Results to date
9. CSRA in a nutshell
10. CSRA reflections
11. Outlook on saving water
12. in the Barind tract
A promising way to reduce this water consumption is AWD, alternate wetting and drying of paddy rice. AWD applies controlled intermittent irrigation.

Instead of continuous standing water in the crop, farmers allow their fields to dry for a few days before re-irrigating. By slowing, or ideally halting, the depletion of groundwater, this new practice enables farming communities to cope better with more erratic water availability. The project described here also involves a second water-saving intervention. AWD is accompanied by a shift from paddy rice to higher-value, less water-intensive crops. Vegetables and fruit provide attractive rotation options here.

Alternate wetting and drying (AWD) is a method of controlled and intermittent irrigation, to cultivate irrigated rice with much less water than the usual system of maintaining continuous standing water in the crop. A periodic drying and re-flooding irrigation approach is followed in which the fields are allowed to dry for a few days before re-irrigation.

PROBLEM DEFINITION
- **Groundwater levels are declining;** continuous groundwater extraction reduces farmers' productivity and resilience
- **Irrigation efficiency in Bangladesh is the lowest in South Asia.** High production costs make agricultural produce uncompetitive
- Traditional rice production is a key agricultural contributor to greenhouse gas emissions (field flooding causes high methane production)

OBJECTIVES
- **Reduce groundwater extraction to avoid further depletion of groundwater levels**
- **Improve the resilience of rice farmers**

ACTIVITIES
1. Introduction of paddy cultivation using Alternate Wetting & Drying (AWD) techniques
2. Introduction of vegetables and fruits alongside paddy as high-value rotation options.
THE CLIMATE CHANGE CHALLENGE

Bangladesh has heavy rain during the June-September monsoon. The rest of the year is very dry. Outside the monsoon season, farmers irrigate their crops with groundwater. Most of them use inefficient methods such as flood irrigation. Heavy extraction has lowered groundwater levels, notably in northwestern Bangladesh’s Barind Tract. This depletion is aggravated by increasingly erratic rainfall. In recent decades, both dry spells and flooding have become more frequent in the region.

HOW THE PROJECT IS CURRENTLY CLIMATE-SMART

The project’s ‘climate-smartness’ is visible in all three pillars of CSRA: profitability, mitigation and resilience.

PROFITABILITY
- Reduced costs of irrigation (-23%)
- Minimal investment cost

MITIGATION
- Reduced water usage (-40%)
- Lower GHG emissions than traditional rice production

RESILIENCE
- Reduces water usage (-40%)
- Increased resilience to erratic water availability

AWD
- Reduced water usage (-90%)
- Reduced GHG emissions

Crop diversification
- Increased revenue from higher yields and prices of vegetables and fruit
- Reduced water usage (-90%)
- Income diversification
- Increased resilience to erratic water availability

PILLAR 1: PROFITABILITY

- **Lower input costs**: AWD only very slightly increases yields. However, farmers’ profitability improves thanks to the lower pump costs of less frequent irrigation. The required investment is only $0.50 to purchase a pipe. It should, however, be noted that many smallholders in Bangladesh grow rice for family food security, even if it generates a financial loss.

<table>
<thead>
<tr>
<th></th>
<th>Traditional irrigation</th>
<th>AWD</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice yield per acre</td>
<td>2,160 kg</td>
<td>2,280 kg</td>
<td>+5%</td>
</tr>
<tr>
<td>Revenues per acre</td>
<td>54,000TK</td>
<td>57,000TK</td>
<td>+5%</td>
</tr>
<tr>
<td>Total expenses per acre</td>
<td>58,292TK</td>
<td>57,172TK</td>
<td>-2%</td>
</tr>
<tr>
<td>o/w irrigation expenses</td>
<td>4,840TK (8,3%)</td>
<td>3,720TK (6,5%)</td>
<td>-23%</td>
</tr>
<tr>
<td>o/w land lease expenses</td>
<td>18,000TK (30,9%)</td>
<td>18,000TK (31,5%)</td>
<td>0%</td>
</tr>
<tr>
<td>o/w land preparation expenses</td>
<td>3,600TK (6,2%)</td>
<td>3,600TK (6,2%)</td>
<td>0%</td>
</tr>
<tr>
<td>o/w fertilizer expenses</td>
<td>10,452TK (17,9%)</td>
<td>10,452TK (17,9%)</td>
<td>0%</td>
</tr>
<tr>
<td>o/w pesticide expenses</td>
<td>6,000TK (10,3%)</td>
<td>6,000TK (10,3%)</td>
<td>0%</td>
</tr>
<tr>
<td>o/w labor expenses</td>
<td>15,400TK (26,4%)</td>
<td>15,400TK (26,4%)</td>
<td>0%</td>
</tr>
<tr>
<td>Profit per acre</td>
<td>-4,292TK</td>
<td>-172TK</td>
<td></td>
</tr>
</tbody>
</table>

- Pricing influences the motivation to save water. There are currently two water pricing schemes for Barind Tract rice growers. Traditionally, access to water pumps has been priced on a contractual basis per acre. Here, farmers have no financial incentive to adopt AWD, as water charges do not depend on the amount used. The Barind Multipurpose Development Authority (BMDA) is now introducing volumetric payment systems. Making farmers pay for the water they actually use leads to savings for those farming in favorable locations.

- The introduction of AWD needs strongly coordinated change across communities farming in the same watershed.

- **Higher revenues and profit**: By diversifying – e.g. replacing irrigated rice with vegetables – farmers increase their revenues by up to 167% per acre. Total expenses for vegetable production are similar to those for rice, but earnings are much higher. Farmers making a loss with rice can earn handsome profits with vegetables. Our table illustrates a leap from a 4,292TK deficit per acre to a 96,000TK profit.

 The additional income can help support rice production which, despite limited profit, is very important for subsistence.
PILLAR 2: MITIGATION

REduced Greenhouse Gas Emissions

• In AWD fields, shorter flooding periods reduce methane (CH$_4$) production in comparison to traditional irrigation. Overall, AWD can decrease emitted gases’ Global Warming Potential (see below*) by 35%[1].

Table. Effects of different irrigation techniques on greenhouse gas emission of rice fields in Bangladesh (based on CH$_4$ and N$_2$O emission measurements).

<table>
<thead>
<tr>
<th>Water use</th>
<th>Traditional irrigation</th>
<th>AWD</th>
<th>% Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Warming Potential (kg CO$_2$ equivalent/ha)</td>
<td>5,819.4</td>
<td>3,736.5</td>
<td>36%</td>
</tr>
<tr>
<td>Greenhouse Gas Intensity (kg CO$_2$ equivalent/kg grain yield)</td>
<td>1.01</td>
<td>0.67</td>
<td>34%</td>
</tr>
</tbody>
</table>

* Global Warming Potential: the capacity of greenhouse gases to absorb heat over 100 years, in relation to that of CO$_2$.

Greenhouse Gas Intensity: level of GHG emission per unit of economic activity (here: kg of grain yield). Data adapted from: S. M. Mofijul Islam et al., ‘Effects of water management on greenhouse gas emissions from farmers’ rice fields in Bangladesh’, 2020

• Crop diversification. Compared to vegetables, rice has very high greenhouse gas emission rates, as flooded paddy fields produce high amounts of methane[2]. Alongside transitioning to AWD, growing vegetables on some of the land or as a rotation crop can further reduce emissions[3].

2. J. Poore and T. Nemecek, ‘Reducing food’s environmental impacts through producers and consumers’, Science, 2018
• **AWD** reduces water use by 33%; irrigation frequency drops from 15 to 10 cycles per season. Total consumption per acre falls from 5.1 million liters per season to 3.4 million, for equal yields.

• **Crop diversification**: Substituting irrigated rice with vegetable crops reduces total water consumption by 87% (from 5.1 million liters to 650,000 liters). Vegetables need to be irrigated less frequently and consume less water per irrigation cycle.

PILLAR 3: RESILIENCE

The project enhances farmers’ resilience in 3 ways:

• **Reduced water use**: The introduction of AWD helps farmers to be more resilient by ensuring the same yield with less water. It also avoids further depletion of groundwater, supporting the future resilience of farming systems.

• **Increased resource independence**: Reduced water demand makes farmers less dependent on declining aquifers and incidental power loss in the pumping facilities.

• **Increased diversification**: Through the introduction of vegetables, farmers diversify their revenue sources, while also spreading their income across seasons.
RESULTS TO DATE

In the first three years of the project, **7,200 farmers were trained** on AWD; 3,475 (48%) have adopted the practice. A slightly higher number of farmers have adopted crop diversification, replacing part of their irrigated rice with vegetables.

<table>
<thead>
<tr>
<th># Farmers</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmers trained</td>
<td>800</td>
<td>2,400</td>
<td>4,000</td>
<td>7,200</td>
</tr>
<tr>
<td>Farmers adopting AWD</td>
<td>206</td>
<td>1,200</td>
<td>2,069</td>
<td>3,475</td>
</tr>
<tr>
<td>Adoption rate AWD</td>
<td>26%</td>
<td>50%</td>
<td>51%</td>
<td>48%</td>
</tr>
<tr>
<td>Farmers adopting crop diversification</td>
<td>0</td>
<td>1,138</td>
<td>2,445</td>
<td>3,583</td>
</tr>
<tr>
<td>Adoption rate crop diversification</td>
<td>0%</td>
<td>47%</td>
<td>61%</td>
<td>49%</td>
</tr>
<tr>
<td>Land surface dedicated to vegetables (from paddy)</td>
<td>0</td>
<td>250</td>
<td>538</td>
<td>788</td>
</tr>
</tbody>
</table>

The main barrier to the adoption of AWD is that there is **limited financial gain**. The method does not increase productivity, and lower water use does not decrease costs when water is priced by area of farmed land. This issue is already partially addressed due to the local authorities (BMDA) gradually introducing the volumetric water payment system. Hence, we focus on the combination of **water cost savings** and **minimal investment** required. AWD is promoted in combination with crop diversification to ensure higher revenues and profits. However, farmers also adopt AWD because they experience **water scarcity** in their farming and household use.
Our objective: To help smallholders grow profits (profitability) while increasing their capacity to deal with shocks (resilience) and reducing their negative impact on the environment (mitigation).

5 CSRA DESIGN PRINCIPLES

A. Adapt CSRA as starting point
- Identify most important climate challenge
- Formulate objectives across the 3 CSRA pillars

B. Become expert on target audience
- Define and prioritise various customer groups/target audiences
- Identify drivers and barriers to the adoption of promoted behaviour
- Integrate behavioural change lens into project design

C. Clarify SFSA’s role
- Clearly define SFSA’s role:
 - R&D
 - Testing to drive initial adoption, demonstrate to partners
 - Scaling / hand-over to partners

D. Deliver on farmer profitability & accessibility
- Conduct P&L analysis to understand the impact on short- and long term profits
- Understand cash flow implications and potential financing need
- Ensure financial sustainability after project subsidies end

E. Ensure coherent project design
- Demonstrate how activities contribute to the achievement of objectives
- Ensure that activities are adapted to the target audience (e.g. purchasing power)
- Set indicators that are aligned with the objectives and SFSA’s role
- Make conscious trade-offs to ensure farmer adoption
REFLECTIONS

DESIGN PRINCIPLES

<table>
<thead>
<tr>
<th>Adapt CSRA as starting point</th>
<th>LEARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Groundwater depletion key climate change challenge in Barind Tract</td>
<td>+ Objectives defined across 3 CSRA pillars: profitability, resilience and mitigation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Become expert on target audience</th>
<th>+ Baseline conducted on rice farming</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Adoption rate can potentially be improved by clearer customer segmentation and behavioral change lens</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clarify SFSA’s role</th>
<th>+ SFSA’s role clearly defined: testing to drive initial adoption and demonstrating to partners</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Deliver on farmer profitability & accessibility</th>
<th>+ Detailed data available on cost structure of rice farming</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Activities are financially sustainable:</td>
<td></td>
</tr>
<tr>
<td>- Minimal investment the costs required</td>
<td></td>
</tr>
<tr>
<td>- Crop diversification ensures short-term profit gain for farmers</td>
<td></td>
</tr>
<tr>
<td>+ Make sure that farmers are connected to offtake markets when recommending a full business case on the transition to vegetables, i.e., careful selection of the new crop, considering (i) perishability and (ii) strength of existing value chains, or investments required in developing new value chains</td>
<td></td>
</tr>
<tr>
<td>+ To drive farmer adoption, consider creating a stronger financial incentive through policy changes that would switch the water pricing systems from payment by land surface to payment by volume of water used.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ensure coherent project design</th>
<th>+ Activities contribute to achievement of objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Activities are adapted to target audience as minimal up-front investment costs</td>
<td></td>
</tr>
<tr>
<td>+ Bundling with crop diversification ensures mitigation and profitability benefits</td>
<td></td>
</tr>
</tbody>
</table>

Water efficient technologies
OUTLOOK ON SAVING WATER IN THE BARIND TRACT

Water pricing changes are already underway in the Barind Tract

The BMDA is introducing volumetric water distribution systems (pre-paid pumps) for rice fields throughout the region. Compared to the previous contractual system (fixed price per acre per season), this will reduce water costs at least for farmers in the lowlands, where groundwater is widely available and little irrigation is necessary. The water payment change will be especially noticeable in the highlands, where groundwater declines very quickly, and water costs are still higher in the volumetric payment system than in the contractual payment system. These farmers will have the strongest incentive to introduce AWD in their fields. This discrepancy shows that there is still room for improvement in terms of the financial regulation of water usage in rice farming. While adjusting water pricing systems is very important, it is not the only component of the problem. In general, irrigation constitutes less than 10% of rice-growing expenses. Growing environmental awareness in the community is therefore also essential.

Vegetable production has a different water pricing scheme than rice production as it requires significantly lower amounts of water per season. Therefore, water prices are not an important factor in the profitability of vegetable growing.

Community awareness is an important factor in the region-wide success of AWD adoption

Farmers want to see for themselves that introducing AWD does not reduce yield. Once they have seen this in their own or neighbors’ fields, they have no reason to continue using the traditional system. Gradual awareness-building in the community, coupled with the introduction of volumetric payment water pumps, is expected to raise AWD adoption rates further in the next few years.

Support activities:
✓ Raising community awareness of water scarcity
✓ Coordinate AWD introduction on community level
✓ Advocacy for water pricing
✓ Building value chains for new vegetables (processing capacities, marketing)

Potential challenges:
! Unwillingness to diversify crops on large scale (high importance of being self-sufficient on rice)
! High water prices in volumetric system in highland locations
! Skepticism towards yield under AWD

Outcome: + Lower water consumption + Reduced GHG emissions
Goal: AWD + crop diversification + better value chains + policy

Outcome: + Lower water consumption + Reduced GHG emissions + More income + Lower water costs (volumetric charges)

Where we are now

Start: Continuous flooding

Mid-way: AWD

Profitability

Mitigation resilience

Water efficient technologies
ACKNOWLEDGEMENT

The project “Introducing Water-Efficient Technologies in Barind Tract” is sponsored by The Coca-Cola Foundation (TCCF) and supported by the 2030 Water Resources Group (2030WRG), and jointly implemented by Syngenta Foundation for Sustainable Agriculture Bangladesh (technical partner) and DASCOH Foundation (implementation partner) in the context of the Bangladesh Water Multi-Stakeholder Partnership (BWMSP) - Work Stream on Agriculture Water, towards attaining the overarching goals of enhancing agro-water productivity, reducing groundwater extraction and increasing farmers’ income, focusing on the water-stressed North-West region and especially in the Barind Tract. The duration of the project is 2018-2021.